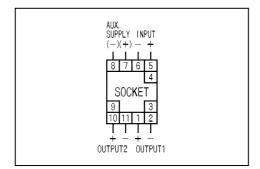
§ PLUG-IN TRANSDUCER § 2-OUTPUT TYPE

SIGNAL TRANSDUCER

ISOLATOR WTP2 -


Use

Amplifies various kinds of DC signals and converts them into a unified intersystem signal. With input and output insulated, the product offers full advantages in transmitting insulated signals between measuring systems, cutoff of noise, protecting a control circuit from a sneak current, and transmitting an output directly to a distant place.

Features

- 1. Constant voltage/current output
- 2. Withstand voltage between input, output, auxiliary supply and outer case (earth) is AC2, 000V (50/60Hz), complete insulation for 1 minute.
- 3. Withstand voltage between 1st and 2nd output is AC1, 000V.
- 4. Impulse withstands voltage 5kV, $1.2/50\mu s$ (between electric circuit and outer case), and positive/negative polarity 3 times each is guaranteed.

Connection diagram

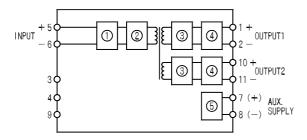
Specification

Input (input resistant) A1: DC0-10mV (approx.1MΩ) A2: DC0-50mV (approx.1MΩ) A3: DC0-60mV (approx.1MΩ) A3: DC0-100mV (approx.1MΩ) A4: DC0-100mV (approx.1MΩ) A5: DC0-1V (approx.1MΩ) A6: DC0-5V (approx.1MΩ) A7: DC0-10V (approx.1MΩ) A8: DC1-5V (approx.1MΩ) B1: DC±10mV (approx.1MΩ) B2: DC±50mV (approx.1MΩ) B3: DC±60mV (approx.1MΩ) B3: DC±60mV (approx.1MΩ) B4: DC±100mV (approx.1MΩ) B5: DC±1V (approx.1MΩ) B4: DC±10V (approx.1MΩ) B5: DC±1V (approx.1MΩ) B5: DC±1V (approx.1MΩ) B4: DC±5V (approx.1MΩ) B5: DC±10V (approx.1MΩ) B7: DC±10V (approx.1MΩ)	Acce or voltage drop) C1 : DC0-10µA (100mV) *1 C2 : DC0-100µA (100mV) C3 : DC0-10nµA (approx.100Q) C4 : DC0-5mA (approx.100Q) C5 : DC0-10mA (approx.100Q) C6 : DC0-16mA (approx.100Q) C7 : DC4-20mA (approx.100Q) D1 : DC±10µA (±100mV)*1 D2 : DC±10µA (±100mV) D3 : DC±500µA (±100mV) D4 : DC±1mA (approx.100Q) D5 : DC±5mA (approx.100Q) D6 : DC±10mA (approx.100Q) D6 : OC±10mA (approx.100Q) D6 : OC±10mA (approx.100Q) D6 : OC±10mA (approx.100Q) D6 : Other than those above MAX 300V, 100mA : Other than those above	I*t Output (load resistance) 1 : DC0-100mV(200Ω) 2 : DC0-1V (200Ω) 3 : DC0-5V (1kΩ) 4 : DC 0-10V (2kΩ) 5 : DC1-5V (1kΩ) 4 : DC0-1mA (12kΩ) 5 : DC0-1mA (12kΩ) 6 : DC0-1mA (12kΩ) 7 : DC0-1omA (12kΩ) 8 : DC0-1omA (12kΩ) 9 : DC0-1omA (750Ω) 10 : DC1-5mA (2.4kΩ) 11 : DC4-20mA (600Ω) 12 : other than those above 14 : DC4-20mA (800Ω) DC1-5V (250kΩ) With output switching function	2nd Output (load resistance) 1: DC0-100mV(200Ω) 2: DC0-1V (200Ω) 3: DC0-5V (1kΩ) 4: DC 0-10V (2kΩ) 5: DC1-5V (1kΩ) 4: DC 0-10V (2kΩ) 5: DC1-5V (1kΩ) 6: DC0-1mA (7kΩ) 6: DC0-1mA (7kΩ) 7: DC0-1mA (7kΩ) 9: DC0-5mA (1.4kΩ) 1: DC0-16mA (430Ω) 1: DC1-5mA (1.4kΩ) 1: DC1-5mA (1.4kΩ) 1: DC4-20mA (350Ω) 1: other than those above 5: DC1-5V (1kΩ)	Auxiliary supply □: AC100V±10%, 50/60Hz □: AC110V±10%, 50/60Hz □: AC200V±10%, 50/60Hz □: AC220V±10%, 50/60Hz □: C24V±10% □: other than those above □: AC100V+10%, -15%, 50/60Hz □: AC100V+10%, -15%, 50/60Hz □: AC100V+10%, -15%, 50/60Hz □: AC20V+10%, -15%, 50/60Hz □: AC20V+10%, -15%, 50/60Hz □: AC20V+10%, -15%, 50/60Hz	Common specification Tolerance: ±0.25% *2 Response time: 0.25sec./90% Consumption VA: AC power source:3VA DC power source:3VA DC power source:3.5W Weight: AC power source:500g DC power source:400g
				50/60Hz 5 : DC24V+10%, -15%,	

*1. Circuit voltage 15V for an input of 10μA. *2. Tolerance becomes ±0.5% when input voltage is less than 50mV; input current is less than 100μA.

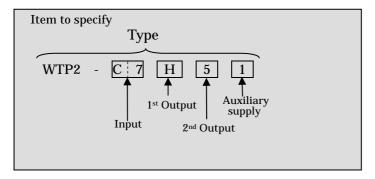
Open of current output: even if the current output terminal is used in a state of regular open, there is no problem. Also, a voltage of approx. 25V occurs on the output terminal.

WTP2-C7H51 (80 × 50 × 133mm/500g)


Built-in ripple filter

Even if a ripple of single-phase AC full rectification wave (50/60Hz) degree is included in input wave, it still converts the wave into a smoothed DC signal. Please consult with us for special wave patterns such as an inverter.

UR-1 precise resistance unit (selling separately)


Please use a UR-1 combined with an isolator of voltage input. When changing the isolator in a hot line state at the time of current input, if measures against open are necessary, connect UR-1 to socket and convert it into a voltage signal before using it. (UR-1, the resistance specified)

Block diagram

Low-drift amplifying circuit Pulse width modulation circuit Pulse width demodulation circuit Output circuit Insulated power source circuit

Purchase specifications

